R., Hodgman, T. C., Yang, Z. R. and Doyle, A. K. (2003). Characterizing
teolytic cleavage site activity using bio-basis function neural networks,
informatics, 19, pp. 1741–1747.
Hoffmann, F. and Perkins, A. (2020). Toward a more holistic method of
ome assembly assessment, BMC Bioinformatics, 21, pp. 249.
hou, P. and Li, Z. (2007). T-scale as a novel vector of topological descriptors for
no acids and its application in QSARs of peptides, Journal of Molecular
ucture, 830, pp. 106–115.
R. (1996). Regression shrinkage and selection via the lasso, Journal of the
yal Statistical Society, 58, pp. 267–288.
R., Hastie, T. (2007). Outlier sums for differential gene expression analysis,
statistics, 8, pp. 2–8.
. E. (2001). Sparse Bayesian learning and the relevance vector machine, Journal
Machine Learning Research, 1, pp. 211–244.
A. N. (1963). Solution of incorrectly formulated problems and the regularization
hod, Soviet Mathematics, 4, pp. 1035–1038.
, Rhodes, D., Perner, S., Dhanasekaran, S., Mehra, R., Sun, X., Varambally, S.,
o, X., Tchinda, J., Kuefer, R., Lee, C., Montie, J. E., Shah, R. B., Pienta, K. J.
bin M. A. and Chinnaiyan A. M. (2005). Recurrent fusion of TMPRSS2 and
S transcription factor genes in prostate cancer, Science, 310, pp. 644–648.
A., King, C., de la Morenas, A. and Perry, V. K. (2008). Gene expression
ormalities in histologically normal breast epithelium of breast cancer patients,
ernational Journal of Cancer, 122, pp. 1557–1566.
Baldrich, P., Criqui, M. C., Dubois, M., Clavel, M., Meyers, B. C. and Genschik,
(2019). Cell cycle-dependent regulation and function of ARGONAUTE1 in
nts, Plant Cell, 31, pp. 1734–1750.
Maleki, F., Kusalik, A. and Napper, S. (2016). DAPPLE2: a tool for the
mology-based prediction of post-translational modification sites, Journal of
teome Research, 15, pp. 2760–2767.
A., Hines, W. C., Vargas, K. M., Jones, A. C., Joste, N. E., Bisoffi, M. and
ffith, J. K. (2011). breast field cancerization: isolation and comparison of
merase expressing cells in tumor and tumor adjacent, histologically normal
ast tissue, Molecular Cancer Research, 9, pp. 1209–1221.
Ghosh, D. and Feingold, E. (2012). Comprehensive literature review and
istical considerations for microarray meta-analysis. Nucleic Acids Research, 40,
3785–3799.
S. (2021). Modified significance analysis of microarrays in heterogeneous
eases, Journal of Personalised Medicine, 11, pp. 62.
Y. and Liang, J. (2006). Estimation of amino acid residue substitution rates at
al spatial regions and application in protein function inference: a Bayesian
nte Carlo approach, Molecular Biology, 23, pp. 421–436.
Hayashi, T. and Egawa, T. (2019). The effects of caffeine on metabolomic
ponses to muscle contraction in rat skeletal muscle, Nutrients, 11, e1819.